Long Term Evolution (LTE) is a 4G wireless broadband technology developed by the Third Generation Partnership Project (3GPP), an industry trade group.
3GPP engineers named the technology "Long Term Evolution" because it represents the next step (4G) in a progression from GSM, a 2G standard, to UMTS, the 3G technologies based upon GSM. LTE provides significantly increased peak data rates, with the potential for 100 Mbps downstream and 30 Mbps upstream, reduced latency, scalable bandwidth capacity, and backwards compatibility with existing GSM and UMTS technology. Future developments to could yield peak throughput on the order of 300 Mbps.
The upper layers of LTE are based upon TCP/IP, which will likely result in an all-IP network similar to the current state of wired communications. LTE will support mixed data, voice, video and messaging traffic. LTE uses OFDM (Orthogonal Frequency Division Multiplexing) and, in later releases, MIMO (Multiple Input Multiple Output) antenna technology similar to that used in the IEEE 802.11n wireless local area network (WLAN) standard. The higher signal to noise ratio (SNR) at the receiver enabled by MIMO, along with OFDM, provides improved coverage and throughput, especially in dense urban areas.
LTE is scheduled to be launched commercially in 2010 by Verizon Wireless and AT&T Wireless. T-Mobile and Alltel have also announced plans to roll out 4G capabilities based on LTE. These networks will compete with Clearwire's WiMAX for both enterprise and consumer broadband wireless customers. Outside of the US telecommunications market, GSM is the dominant mobile standard, with more than 80% of the world's cellular phone users. As a result, HSDPA and then LTE are the likely wireless broadband technologies of choice for most users. Nortel and other infrastructure vendors are focusing significant research and development efforts on the creation of LTE base stations to meet the expected demand. When implemented, LTE has the potential to bring pervasive computing to a global audience, with a wire-like experience for mobile users everywhere.